3.381 \(\int \frac {(a+b x^2)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=63 \[ -\frac {\left (a+b x^2\right )^{3/2}}{x}+\frac {3}{2} b x \sqrt {a+b x^2}+\frac {3}{2} a \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right ) \]

[Out]

-(b*x^2+a)^(3/2)/x+3/2*a*arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))*b^(1/2)+3/2*b*x*(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {277, 195, 217, 206} \[ -\frac {\left (a+b x^2\right )^{3/2}}{x}+\frac {3}{2} b x \sqrt {a+b x^2}+\frac {3}{2} a \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(3/2)/x^2,x]

[Out]

(3*b*x*Sqrt[a + b*x^2])/2 - (a + b*x^2)^(3/2)/x + (3*a*Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/2

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{3/2}}{x^2} \, dx &=-\frac {\left (a+b x^2\right )^{3/2}}{x}+(3 b) \int \sqrt {a+b x^2} \, dx\\ &=\frac {3}{2} b x \sqrt {a+b x^2}-\frac {\left (a+b x^2\right )^{3/2}}{x}+\frac {1}{2} (3 a b) \int \frac {1}{\sqrt {a+b x^2}} \, dx\\ &=\frac {3}{2} b x \sqrt {a+b x^2}-\frac {\left (a+b x^2\right )^{3/2}}{x}+\frac {1}{2} (3 a b) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )\\ &=\frac {3}{2} b x \sqrt {a+b x^2}-\frac {\left (a+b x^2\right )^{3/2}}{x}+\frac {3}{2} a \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 50, normalized size = 0.79 \[ -\frac {a \sqrt {a+b x^2} \, _2F_1\left (-\frac {3}{2},-\frac {1}{2};\frac {1}{2};-\frac {b x^2}{a}\right )}{x \sqrt {\frac {b x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(3/2)/x^2,x]

[Out]

-((a*Sqrt[a + b*x^2]*Hypergeometric2F1[-3/2, -1/2, 1/2, -((b*x^2)/a)])/(x*Sqrt[1 + (b*x^2)/a]))

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 112, normalized size = 1.78 \[ \left [\frac {3 \, a \sqrt {b} x \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) + 2 \, \sqrt {b x^{2} + a} {\left (b x^{2} - 2 \, a\right )}}{4 \, x}, -\frac {3 \, a \sqrt {-b} x \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) - \sqrt {b x^{2} + a} {\left (b x^{2} - 2 \, a\right )}}{2 \, x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

[1/4*(3*a*sqrt(b)*x*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) + 2*sqrt(b*x^2 + a)*(b*x^2 - 2*a))/x, -1/2
*(3*a*sqrt(-b)*x*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - sqrt(b*x^2 + a)*(b*x^2 - 2*a))/x]

________________________________________________________________________________________

giac [A]  time = 0.67, size = 73, normalized size = 1.16 \[ \frac {1}{2} \, \sqrt {b x^{2} + a} b x - \frac {3}{4} \, a \sqrt {b} \log \left ({\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2}\right ) + \frac {2 \, a^{2} \sqrt {b}}{{\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} - a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x^2,x, algorithm="giac")

[Out]

1/2*sqrt(b*x^2 + a)*b*x - 3/4*a*sqrt(b)*log((sqrt(b)*x - sqrt(b*x^2 + a))^2) + 2*a^2*sqrt(b)/((sqrt(b)*x - sqr
t(b*x^2 + a))^2 - a)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 69, normalized size = 1.10 \[ \frac {3 a \sqrt {b}\, \ln \left (\sqrt {b}\, x +\sqrt {b \,x^{2}+a}\right )}{2}+\frac {3 \sqrt {b \,x^{2}+a}\, b x}{2}+\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}} b x}{a}-\frac {\left (b \,x^{2}+a \right )^{\frac {5}{2}}}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)/x^2,x)

[Out]

-1/a/x*(b*x^2+a)^(5/2)+1/a*b*x*(b*x^2+a)^(3/2)+3/2*b*x*(b*x^2+a)^(1/2)+3/2*a*b^(1/2)*ln(b^(1/2)*x+(b*x^2+a)^(1
/2))

________________________________________________________________________________________

maxima [A]  time = 1.34, size = 43, normalized size = 0.68 \[ \frac {3}{2} \, \sqrt {b x^{2} + a} b x + \frac {3}{2} \, a \sqrt {b} \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right ) - \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

3/2*sqrt(b*x^2 + a)*b*x + 3/2*a*sqrt(b)*arcsinh(b*x/sqrt(a*b)) - (b*x^2 + a)^(3/2)/x

________________________________________________________________________________________

mupad [B]  time = 5.15, size = 40, normalized size = 0.63 \[ -\frac {{\left (b\,x^2+a\right )}^{3/2}\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{2},-\frac {1}{2};\ \frac {1}{2};\ -\frac {b\,x^2}{a}\right )}{x\,{\left (\frac {b\,x^2}{a}+1\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(3/2)/x^2,x)

[Out]

-((a + b*x^2)^(3/2)*hypergeom([-3/2, -1/2], 1/2, -(b*x^2)/a))/(x*((b*x^2)/a + 1)^(3/2))

________________________________________________________________________________________

sympy [A]  time = 2.37, size = 88, normalized size = 1.40 \[ - \frac {a^{\frac {3}{2}}}{x \sqrt {1 + \frac {b x^{2}}{a}}} - \frac {\sqrt {a} b x}{2 \sqrt {1 + \frac {b x^{2}}{a}}} + \frac {3 a \sqrt {b} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{2} + \frac {b^{2} x^{3}}{2 \sqrt {a} \sqrt {1 + \frac {b x^{2}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)/x**2,x)

[Out]

-a**(3/2)/(x*sqrt(1 + b*x**2/a)) - sqrt(a)*b*x/(2*sqrt(1 + b*x**2/a)) + 3*a*sqrt(b)*asinh(sqrt(b)*x/sqrt(a))/2
 + b**2*x**3/(2*sqrt(a)*sqrt(1 + b*x**2/a))

________________________________________________________________________________________